如圖ab為o的直徑
紅復(fù)19367659902咨詢: 如圖 ab是圓o的直徑,BD是⊙o的弦, -
天寧區(qū)盈配合回復(fù):
______ 題目不完整!試補充如下: 如圖 ab是圓o的直徑,BD是⊙o的弦,延長BD到點C,BD=CD;連結(jié)AC,過點D作DE⊥AC,垂足為E (1)求證:AB=AC (2)求證:DE為⊙o的切線 (3)若⊙o的半徑為5,∠BAC=60°,求DE的長 證明: 因為BD=CD,且...
紅復(fù)19367659902咨詢: 如圖:AB為圓O的直徑,AB=AC,BC交圓O于點D,AC交圓O于點E,角BAC=45度.求證:BC2=2AB*CE -
天寧區(qū)盈配合回復(fù):
______[答案] 因為AB是圓O的直徑 所以角ADB=90度 所以AD是三角形ABC的垂線 因為AB=AC 所以三角形ABC是等腰三角形 所以AD是等腰三角形ABC的中垂線 所以CD=BD=1/2BC 由圓冪定理得: CE*AC=CD*BC 所以AC*CE=1/2BC^2 所以BC^2=2AC*CE
紅復(fù)19367659902咨詢: 如圖,AB為⊙O的直徑,C為弧AB的中點,D為弧AB上異于點C的一點 求證:AC+BC>AD+BD如圖,AB為⊙O的直徑,C為弧AB的中點,D為弧AB上異于... -
天寧區(qū)盈配合回復(fù):
______[答案] 用代數(shù)法比較簡單. ∵(a-b)2≥0 ∴a2+b2≥2ab 設(shè)AD=a,BD=b,AB=c,AC=d. 則有a2+b2=c2, 2d2=c2. (a+b)2=a2+2ab+b2≤a2+b2+(a2+b2)=2(a2+b2)=4c2 ∴a+b≤2c 當且僅當a=b=c時取等.由題知,a!=c ∴a+b
紅復(fù)19367659902咨詢: 如圖,AB為⊙O的直徑,CD⊥AB于點E,交EO于點D,OF⊥AC于點F1.請寫出三條與BC有關(guān)的真確結(jié)論 2.當∠D=30°,BC=1時,求圓中陰影部分的面積 -
天寧區(qū)盈配合回復(fù):
______[答案] 沒有圖么? (1)答案不唯一,只要合理均可.例如: ①BC=BD;②OF∥BC;③∠BCD=∠A;④△BCE∽△OAF;⑤BC2=BE?AB; ⑥BC2=CE2+BE2;⑦△ABC是直角三角形;⑧△BCD是等腰三角形. (2)連接OC,則OC=OA=OB, ∵∠D=30°, ∴∠A=...
紅復(fù)19367659902咨詢: 如圖,AB為圓O的直徑,C為AB延長線上一點,CD是圓O的切,切點為D,DE垂直AB于點E,求證角一等于角二.角一角二分別是角BDE與角CDB -
天寧區(qū)盈配合回復(fù):
______[答案] 連接AD∵CD是圓的切線∴∠CDB=∠A(弦切角=所夾弧上的圓周角)∵AB是直徑∴∠ADB=90°∵DE⊥AB∴∠DEB=∠ADB=90°∵∠DBE=∠ABD(同角)∴△ADB∽△DBE∴∠BDE=∠A∴∠CDB=∠BDE(求∠BDE=∠A還可以利用角關(guān)系來求...
紅復(fù)19367659902咨詢: 如圖,AB為⊙O的直徑,BC切⊙O于點B,CO交⊙O于D,連接AD,若∠C=25°,求∠A的度數(shù). -
天寧區(qū)盈配合回復(fù):
______[答案] ∵AB為⊙O的直徑,BC切⊙O于B, ∴∠ABC=90°(切線的性質(zhì)), ∵∠C=25°(已知), ∴∠BOC=65°(直角三角形的兩個銳角互為余角), ∵∠A= 1 2∠BOD(同弧所對的圓周角是所對的圓心角的一半), ∴∠A=32.5°.
紅復(fù)19367659902咨詢: 如圖,AB是圓O的直徑,AB=AC,BC交圓O于點D,AC交圓O于點E,角BAC=45度,(1)求角EBC的度數(shù)(2)求證:BD=CD -
天寧區(qū)盈配合回復(fù):
______[答案] 首先,畫出這個圖形.然后你連接OE(輔助線).∵AB是直徑,O點是圓心,∴OA=OE=OB在△OAE中,OA=OE,∴∠OAE=∠OEA(等腰三角形定理)∵∠BAC=45°,∴∠OAE=∠BAC=∠OEA=45°(∠OAE與∠BAC是同一個角)∴∠AOE=90° ∴∠E...
紅復(fù)19367659902咨詢: 如圖,AB為圓O的直徑,點C為弧AB的中點,弦CE交AB于點F,D為AB延長線上一點,且DE=DF,已知DE為圓O切線,連AE、AC,若OF=1,OA=3,求△... -
天寧區(qū)盈配合回復(fù):
______[答案] 連接OC.AB為直徑,C為弧AB的中點,則:OC⊥AB,OC=AO=OB=3;BF=OB-OF=2.設(shè)BD=X,則DE=DF=2+X.DE為圓的切線,則:DE2=BD*AD,(2+X)2=X(X+6),X=2.即BD=2,DE=4.連接OE,OE⊥DE,作EH⊥OD于H.由面積關(guān)系可知:DE*OE=OD...
紅復(fù)19367659902咨詢: 如圖,已知AB為圓o的直徑,弦CD垂直于AB,垂足為H -
天寧區(qū)盈配合回復(fù):
______[答案] (1)連接CB因為AB是直徑所以角ACB=90度因為角CAB=角CAB,角ACB=角AHC=90度所以三角形ACH相似于三角形ABC所以AC:AB=AH:AC所以AH*AB=AC^2(2)連接BC因為AB是直徑所以角AFB=90度因為角BAF=角BAF,角AFB=角AHE所以三角...
紅復(fù)19367659902咨詢: 已知,如圖:AB為⊙O的直徑,AB=AC,BC交⊙O于點D,AC交⊙O于點E,∠BAC=45°.給出以下四個結(jié)論:①∠EBC=22.5°;②BD=DC;③劣弧AE是劣弧DE的2... -
天寧區(qū)盈配合回復(fù):
______[答案] 連接AD,OE,OD, ∵AB為⊙O的直徑, ∴∠ADB=∠AEB=90°, 即AD⊥BC, ∵AB=AC, ∴BD=DC; 故②正確; ∵∠BAC=45°, ∴∠ABC=∠ACB=67.5°,∠ABE=90°-∠BAC=45°, ∴∠EBC=∠ABC-∠ABE=22.5°; 故①正確; ∵∠DOE=2∠DAE=∠...